Papers
Topics
Authors
Recent
2000 character limit reached

Automatic Reviewers Fail to Detect Faulty Reasoning in Research Papers: A New Counterfactual Evaluation Framework (2508.21422v1)

Published 29 Aug 2025 in cs.CL

Abstract: LLMs have great potential to accelerate and support scholarly peer review and are increasingly used as fully automatic review generators (ARGs). However, potential biases and systematic errors may pose significant risks to scientific integrity; understanding the specific capabilities and limitations of state-of-the-art ARGs is essential. We focus on a core reviewing skill that underpins high-quality peer review: detecting faulty research logic. This involves evaluating the internal consistency between a paper's results, interpretations, and claims. We present a fully automated counterfactual evaluation framework that isolates and tests this skill under controlled conditions. Testing a range of ARG approaches, we find that, contrary to expectation, flaws in research logic have no significant effect on their output reviews. Based on our findings, we derive three actionable recommendations for future work and release our counterfactual dataset and evaluation framework publicly.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 2 tweets with 2 likes about this paper.