PMODE: Theoretically Grounded and Modular Mixture Modeling (2508.21396v1)
Abstract: We introduce PMODE (Partitioned Mixture Of Density Estimators), a general and modular framework for mixture modeling with both parametric and nonparametric components. PMODE builds mixtures by partitioning the data and fitting separate estimators to each subset. It attains near-optimal rates for this estimator class and remains valid even when the mixture components come from different distribution families. As an application, we develop MV-PMODE, which scales a previously theoretical approach to high-dimensional density estimation to settings with thousands of dimensions. Despite its simplicity, it performs competitively against deep baselines on CIFAR-10 anomaly detection.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.