Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 175 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 38 tok/s Pro
GPT-5 High 37 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 180 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Beyond Prediction: Reinforcement Learning as the Defining Leap in Healthcare AI (2508.21101v1)

Published 28 Aug 2025 in cs.LG and cs.AI

Abstract: Reinforcement learning (RL) marks a fundamental shift in how artificial intelligence is applied in healthcare. Instead of merely predicting outcomes, RL actively decides interventions with long term goals. Unlike traditional models that operate on fixed associations, RL systems learn through trial, feedback, and long-term reward optimization, introducing transformative possibilities and new risks. From an information fusion lens, healthcare RL typically integrates multi-source signals such as vitals, labs clinical notes, imaging and device telemetry using temporal and decision-level mechanisms. These systems can operate within centralized, federated, or edge architectures to meet real-time clinical constraints, and naturally span data, features and decision fusion levels. This survey explore RL's rise in healthcare as more than a set of tools, rather a shift toward agentive intelligence in clinical environments. We first structure the landscape of RL techniques including model-based and model-free methods, offline and batch-constrained approaches, and emerging strategies for reward specification and uncertainty calibration through the lens of healthcare constraints. We then comprehensively analyze RL applications spanning critical care, chronic disease, mental health, diagnostics, and robotic assistance, identifying their trends, gaps, and translational bottlenecks. In contrast to prior reviews, we critically analyze RL's ethical, deployment, and reward design challenges, and synthesize lessons for safe, human-aligned policy learning. This paper serves as both a a technical roadmap and a critical reflection of RL's emerging transformative role in healthcare AI not as prediction machinery, but as agentive clinical intelligence.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.