Papers
Topics
Authors
Recent
2000 character limit reached

ProactiveEval: A Unified Evaluation Framework for Proactive Dialogue Agents (2508.20973v1)

Published 28 Aug 2025 in cs.CL, cs.AI, and cs.HC

Abstract: Proactive dialogue has emerged as a critical and challenging research problem in advancing LLMs. Existing works predominantly focus on domain-specific or task-oriented scenarios, which leads to fragmented evaluations and limits the comprehensive exploration of models' proactive conversation abilities. In this work, we propose ProactiveEval, a unified framework designed for evaluating proactive dialogue capabilities of LLMs. This framework decomposes proactive dialogue into target planning and dialogue guidance, establishing evaluation metrics across various domains. Moreover, it also enables the automatic generation of diverse and challenging evaluation data. Based on the proposed framework, we develop 328 evaluation environments spanning 6 distinct domains. Through experiments with 22 different types of LLMs, we show that DeepSeek-R1 and Claude-3.7-Sonnet exhibit exceptional performance on target planning and dialogue guidance tasks, respectively. Finally, we investigate how reasoning capabilities influence proactive behaviors and discuss their implications for future model development.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.