Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 72 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 115 tok/s Pro
Kimi K2 203 tok/s Pro
GPT OSS 120B 451 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Nonparametric Inference for Noise Covariance Kernels in Parabolic SPDEs using Space-Time Infill-Asymptotics (2508.20947v1)

Published 28 Aug 2025 in math.ST and stat.TH

Abstract: We develop an asymptotic limit theory for nonparametric estimation of the noise covariance kernel in linear parabolic stochastic partial differential equations (SPDEs) with additive colored noise, using space-time infill asymptotics. The method employs discretized infinite-dimensional realized covariations and requires only mild regularity assumptions on the kernel to ensure consistent estimation and asymptotic normality of the estimator. On this basis, we construct omnibus goodness-of-fit tests for the noise covariance that are independent of the SPDE's differential operator. Our framework accommodates a variety of spatial sampling schemes and allows for reliable inference even when spatial resolution is coarser than temporal resolution.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 2 likes.