Papers
Topics
Authors
Recent
2000 character limit reached

AI Agentic Vulnerability Injection And Transformation with Optimized Reasoning (2508.20866v1)

Published 28 Aug 2025 in cs.CR and cs.AI

Abstract: The increasing complexity of software systems and the sophistication of cyber-attacks have underscored the critical need for effective automated vulnerability detection and repair systems. Traditional methods, such as static program analysis, face significant challenges related to scalability, adaptability, and high false-positive and false-negative rates. AI-driven approaches, particularly those using machine learning and deep learning models, show promise but are heavily reliant on the quality and quantity of training data. This paper introduces a novel framework designed to automatically introduce realistic, category-specific vulnerabilities into secure C/C++ codebases to generate datasets. The proposed approach coordinates multiple AI agents that simulate expert reasoning, along with function agents and traditional code analysis tools. It leverages Retrieval-Augmented Generation for contextual grounding and employs Low-Rank approximation of weights for efficient model fine-tuning. Our experimental study on 116 code samples from three different benchmarks suggests that our approach outperforms other techniques with regard to dataset accuracy, achieving between 89\% and 95\% success rates in injecting vulnerabilities at function level.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.