Papers
Topics
Authors
Recent
2000 character limit reached

Time Series Embedding and Combination of Forecasts: A Reinforcement Learning Approach

Published 28 Aug 2025 in econ.EM | (2508.20795v1)

Abstract: The forecasting combination puzzle is a well-known phenomenon in forecasting literature, stressing the challenge of outperforming the simple average when aggregating forecasts from diverse methods. This study proposes a Reinforcement Learning - based framework as a dynamic model selection approach to address this puzzle. Our framework is evaluated through extensive forecasting exercises using simulated and real data. Specifically, we analyze the M4 Competition dataset and the Survey of Professional Forecasters (SPF). This research introduces an adaptable methodology for selecting and combining forecasts under uncertainty, offering a promising advancement in resolving the forecasting combination puzzle.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 0 likes about this paper.