Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 207 tok/s Pro
GPT OSS 120B 460 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

VarDiU: A Variational Diffusive Upper Bound for One-Step Diffusion Distillation (2508.20646v1)

Published 28 Aug 2025 in cs.LG

Abstract: Recently, diffusion distillation methods have compressed thousand-step teacher diffusion models into one-step student generators while preserving sample quality. Most existing approaches train the student model using a diffusive divergence whose gradient is approximated via the student's score function, learned through denoising score matching (DSM). Since DSM training is imperfect, the resulting gradient estimate is inevitably biased, leading to sub-optimal performance. In this paper, we propose VarDiU (pronounced /va:rdju:/), a Variational Diffusive Upper Bound that admits an unbiased gradient estimator and can be directly applied to diffusion distillation. Using this objective, we compare our method with Diff-Instruct and demonstrate that it achieves higher generation quality and enables a more efficient and stable training procedure for one-step diffusion distillation.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.