Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 60 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 427 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Dual-Model Weight Selection and Self-Knowledge Distillation for Medical Image Classification (2508.20461v1)

Published 28 Aug 2025 in cs.CV, cs.AI, and cs.LG

Abstract: We propose a novel medical image classification method that integrates dual-model weight selection with self-knowledge distillation (SKD). In real-world medical settings, deploying large-scale models is often limited by computational resource constraints, which pose significant challenges for their practical implementation. Thus, developing lightweight models that achieve comparable performance to large-scale models while maintaining computational efficiency is crucial. To address this, we employ a dual-model weight selection strategy that initializes two lightweight models with weights derived from a large pretrained model, enabling effective knowledge transfer. Next, SKD is applied to these selected models, allowing the use of a broad range of initial weight configurations without imposing additional excessive computational cost, followed by fine-tuning for the target classification tasks. By combining dual-model weight selection with self-knowledge distillation, our method overcomes the limitations of conventional approaches, which often fail to retain critical information in compact models. Extensive experiments on publicly available datasets-chest X-ray images, lung computed tomography scans, and brain magnetic resonance imaging scans-demonstrate the superior performance and robustness of our approach compared to existing methods.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.