Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 35 tok/s Pro
GPT-5 High 22 tok/s Pro
GPT-4o 97 tok/s Pro
Kimi K2 176 tok/s Pro
GPT OSS 120B 432 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Federated Learning for Large Models in Medical Imaging: A Comprehensive Review (2508.20414v1)

Published 28 Aug 2025 in cs.CR and cs.CV

Abstract: AI has demonstrated considerable potential in the realm of medical imaging. However, the development of high-performance AI models typically necessitates training on large-scale, centralized datasets. This approach is confronted with significant challenges due to strict patient privacy regulations and legal restrictions on data sharing and utilization. These limitations hinder the development of large-scale models in medical domains and impede continuous updates and training with new data. Federated Learning (FL), a privacy-preserving distributed training framework, offers a new solution by enabling collaborative model development across fragmented medical datasets. In this survey, we review FL's contributions at two stages of the full-stack medical analysis pipeline. First, in upstream tasks such as CT or MRI reconstruction, FL enables joint training of robust reconstruction networks on diverse, multi-institutional datasets, alleviating data scarcity while preserving confidentiality. Second, in downstream clinical tasks like tumor diagnosis and segmentation, FL supports continuous model updating by allowing local fine-tuning on new data without centralizing sensitive images. We comprehensively analyze FL implementations across the medical imaging pipeline, from physics-informed reconstruction networks to diagnostic AI systems, highlighting innovations that improve communication efficiency, align heterogeneous data, and ensure secure parameter aggregation. Meanwhile, this paper provides an outlook on future research directions, aiming to serve as a valuable reference for the field's development.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube