Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 175 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 130 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 425 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

MedFoundationHub: A Lightweight and Secure Toolkit for Deploying Medical Vision Language Foundation Models (2508.20345v1)

Published 28 Aug 2025 in cs.CV and cs.HC

Abstract: Recent advances in medical vision-LLMs (VLMs) open up remarkable opportunities for clinical applications such as automated report generation, copilots for physicians, and uncertainty quantification. However, despite their promise, medical VLMs introduce serious security concerns, most notably risks of Protected Health Information (PHI) exposure, data leakage, and vulnerability to cyberthreats - which are especially critical in hospital environments. Even when adopted for research or non-clinical purposes, healthcare organizations must exercise caution and implement safeguards. To address these challenges, we present MedFoundationHub, a graphical user interface (GUI) toolkit that: (1) enables physicians to manually select and use different models without programming expertise, (2) supports engineers in efficiently deploying medical VLMs in a plug-and-play fashion, with seamless integration of Hugging Face open-source models, and (3) ensures privacy-preserving inference through Docker-orchestrated, operating system agnostic deployment. MedFoundationHub requires only an offline local workstation equipped with a single NVIDIA A6000 GPU, making it both secure and accessible within the typical resources of academic research labs. To evaluate current capabilities, we engaged board-certified pathologists to deploy and assess five state-of-the-art VLMs (Google-MedGemma3-4B, Qwen2-VL-7B-Instruct, Qwen2.5-VL-7B-Instruct, and LLaVA-1.5-7B/13B). Expert evaluation covered colon cases and renal cases, yielding 1015 clinician-model scoring events. These assessments revealed recurring limitations, including off-target answers, vague reasoning, and inconsistent pathology terminology.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.