Stochastic Gradients under Nuisances (2508.20326v1)
Abstract: Stochastic gradient optimization is the dominant learning paradigm for a variety of scenarios, from classical supervised learning to modern self-supervised learning. We consider stochastic gradient algorithms for learning problems whose objectives rely on unknown nuisance parameters, and establish non-asymptotic convergence guarantees. Our results show that, while the presence of a nuisance can alter the optimum and upset the optimization trajectory, the classical stochastic gradient algorithm may still converge under appropriate conditions, such as Neyman orthogonality. Moreover, even when Neyman orthogonality is not satisfied, we show that an algorithm variant with approximately orthogonalized updates (with an approximately orthogonalized gradient oracle) may achieve similar convergence rates. Examples from orthogonal statistical learning/double machine learning and causal inference are discussed.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.