Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 189 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 35 tok/s Pro
GPT-5 High 40 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 207 tok/s Pro
GPT OSS 120B 451 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Linking heterogeneous microstructure informatics with expert characterization knowledge through customized and hybrid vision-language representations for industrial qualification (2508.20243v1)

Published 27 Aug 2025 in cs.CV and cs.LG

Abstract: Rapid and reliable qualification of advanced materials remains a bottleneck in industrial manufacturing, particularly for heterogeneous structures produced via non-conventional additive manufacturing processes. This study introduces a novel framework that links microstructure informatics with a range of expert characterization knowledge using customized and hybrid vision-language representations (VLRs). By integrating deep semantic segmentation with pre-trained multi-modal models (CLIP and FLAVA), we encode both visual microstructural data and textual expert assessments into shared representations. To overcome limitations in general-purpose embeddings, we develop a customized similarity-based representation that incorporates both positive and negative references from expert-annotated images and their associated textual descriptions. This allows zero-shot classification of previously unseen microstructures through a net similarity scoring approach. Validation on an additively manufactured metal matrix composite dataset demonstrates the framework's ability to distinguish between acceptable and defective samples across a range of characterization criteria. Comparative analysis reveals that FLAVA model offers higher visual sensitivity, while the CLIP model provides consistent alignment with the textual criteria. Z-score normalization adjusts raw unimodal and cross-modal similarity scores based on their local dataset-driven distributions, enabling more effective alignment and classification in the hybrid vision-language framework. The proposed method enhances traceability and interpretability in qualification pipelines by enabling human-in-the-loop decision-making without task-specific model retraining. By advancing semantic interoperability between raw data and expert knowledge, this work contributes toward scalable and domain-adaptable qualification strategies in engineering informatics.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper: