Papers
Topics
Authors
Recent
2000 character limit reached

Reinforcement Learning for Search Tree Size Minimization in Constraint Programming: New Results on Scheduling Benchmarks (2508.20056v1)

Published 27 Aug 2025 in cs.LG

Abstract: Failure-Directed Search (FDS) is a significant complete generic search algorithm used in Constraint Programming (CP) to efficiently explore the search space, proven particularly effective on scheduling problems. This paper analyzes FDS's properties, showing that minimizing the size of its search tree guided by ranked branching decisions is closely related to the Multi-armed bandit (MAB) problem. Building on this insight, MAB reinforcement learning algorithms are applied to FDS, extended with problem-specific refinements and parameter tuning, and evaluated on the two most fundamental scheduling problems, the Job Shop Scheduling Problem (JSSP) and Resource-Constrained Project Scheduling Problem (RCPSP). The resulting enhanced FDS, using the best extended MAB algorithm and configuration, performs 1.7 times faster on the JSSP and 2.1 times faster on the RCPSP benchmarks compared to the original implementation in a new solver called OptalCP, while also being 3.5 times faster on the JSSP and 2.1 times faster on the RCPSP benchmarks than the current state-of-the-art FDS algorithm in IBM CP Optimizer 22.1. Furthermore, using only a 900-second time limit per instance, the enhanced FDS improved the existing state-of-the-art lower bounds of 78 of 84 JSSP and 226 of 393 RCPSP standard open benchmark instances while also completely closing a few of them.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper: