Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 56 tok/s Pro
GPT-5 Medium 34 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Reducing Street Parking Search Time via Smart Assignment Strategies (2508.19979v1)

Published 27 Aug 2025 in cs.LG

Abstract: In dense metropolitan areas, searching for street parking adds to traffic congestion. Like many other problems, real-time assistants based on mobile phones have been proposed, but their effectiveness is understudied. This work quantifies how varying levels of user coordination and information availability through such apps impact search time and the probability of finding street parking. Through a data-driven simulation of Madrid's street parking ecosystem, we analyze four distinct strategies: uncoordinated search (Unc-Agn), coordinated parking without awareness of non-users (Cord-Agn), an idealized oracle system that knows the positions of all non-users (Cord-Oracle), and our novel/practical Cord-Approx strategy that estimates non-users' behavior probabilistically. The Cord-Approx strategy, instead of requiring knowledge of how close non-users are to a certain spot in order to decide whether to navigate toward it, uses past occupancy distributions to elongate physical distances between system users and alternative parking spots, and then solves a Hungarian matching problem to dispatch accordingly. In high-fidelity simulations of Madrid's parking network with real traffic data, users of Cord-Approx averaged 6.69 minutes to find parking, compared to 19.98 minutes for non-users without an app. A zone-level snapshot shows that Cord-Approx reduces search time for system users by 72% (range = 67-76%) in central hubs, and up to 73% in residential areas, relative to non-users.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 0 likes.