Simple Stepsize for Quasi-Newton Methods with Global Convergence Guarantees (2508.19712v1)
Abstract: Quasi-Newton methods are widely used for solving convex optimization problems due to their ease of implementation, practical efficiency, and strong local convergence guarantees. However, their global convergence is typically established only under specific line search strategies and the assumption of strong convexity. In this work, we extend the theoretical understanding of Quasi-Newton methods by introducing a simple stepsize schedule that guarantees a global convergence rate of ${O}(1/k)$ for the convex functions. Furthermore, we show that when the inexactness of the Hessian approximation is controlled within a prescribed relative accuracy, the method attains an accelerated convergence rate of ${O}(1/k2)$ -- matching the best-known rates of both Nesterov's accelerated gradient method and cubically regularized Newton methods. We validate our theoretical findings through empirical comparisons, demonstrating clear improvements over standard Quasi-Newton baselines. To further enhance robustness, we develop an adaptive variant that adjusts to the function's curvature while retaining the global convergence guarantees of the non-adaptive algorithm.
Sponsored by Paperpile, the PDF & BibTeX manager trusted by top AI labs.
Get 30 days freePaper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.