Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
GPT-5.1
GPT-5.1 130 tok/s
Gemini 3.0 Pro 29 tok/s Pro
Gemini 2.5 Flash 145 tok/s Pro
Kimi K2 191 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Simple Stepsize for Quasi-Newton Methods with Global Convergence Guarantees (2508.19712v1)

Published 27 Aug 2025 in math.OC and cs.LG

Abstract: Quasi-Newton methods are widely used for solving convex optimization problems due to their ease of implementation, practical efficiency, and strong local convergence guarantees. However, their global convergence is typically established only under specific line search strategies and the assumption of strong convexity. In this work, we extend the theoretical understanding of Quasi-Newton methods by introducing a simple stepsize schedule that guarantees a global convergence rate of ${O}(1/k)$ for the convex functions. Furthermore, we show that when the inexactness of the Hessian approximation is controlled within a prescribed relative accuracy, the method attains an accelerated convergence rate of ${O}(1/k2)$ -- matching the best-known rates of both Nesterov's accelerated gradient method and cubically regularized Newton methods. We validate our theoretical findings through empirical comparisons, demonstrating clear improvements over standard Quasi-Newton baselines. To further enhance robustness, we develop an adaptive variant that adjusts to the function's curvature while retaining the global convergence guarantees of the non-adaptive algorithm.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 2 tweets and received 7 likes.

Upgrade to Pro to view all of the tweets about this paper: