Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 79 tok/s
Gemini 2.5 Pro 60 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 117 tok/s Pro
Kimi K2 201 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

PanoHair: Detailed Hair Strand Synthesis on Volumetric Heads (2508.18944v1)

Published 26 Aug 2025 in cs.GR and cs.CV

Abstract: Achieving realistic hair strand synthesis is essential for creating lifelike digital humans, but producing high-fidelity hair strand geometry remains a significant challenge. Existing methods require a complex setup for data acquisition, involving multi-view images captured in constrained studio environments. Additionally, these methods have longer hair volume estimation and strand synthesis times, which hinder efficiency. We introduce PanoHair, a model that estimates head geometry as signed distance fields using knowledge distillation from a pre-trained generative teacher model for head synthesis. Our approach enables the prediction of semantic segmentation masks and 3D orientations specifically for the hair region of the estimated geometry. Our method is generative and can generate diverse hairstyles with latent space manipulations. For real images, our approach involves an inversion process to infer latent codes and produces visually appealing hair strands, offering a streamlined alternative to complex multi-view data acquisition setups. Given the latent code, PanoHair generates a clean manifold mesh for the hair region in under 5 seconds, along with semantic and orientation maps, marking a significant improvement over existing methods, as demonstrated in our experiments.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 4 likes.