Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
GPT-5.1
GPT-5.1 96 tok/s
Gemini 3.0 Pro 48 tok/s Pro
Gemini 2.5 Flash 155 tok/s Pro
Kimi K2 197 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

BTW: A Non-Parametric Variance Stabilization Framework for Multimodal Model Integration (2508.18551v1)

Published 25 Aug 2025 in cs.LG

Abstract: Mixture-of-Experts (MoE) models have become increasingly powerful in multimodal learning by enabling modular specialization across modalities. However, their effectiveness remains unclear when additional modalities introduce more noise than complementary information. Existing approaches, such as the Partial Information Decomposition, struggle to scale beyond two modalities and lack the resolution needed for instance-level control. We propose Beyond Two-modality Weighting (BTW), a bi-level, non-parametric weighting framework that combines instance-level Kullback-Leibler (KL) divergence and modality-level mutual information (MI) to dynamically adjust modality importance during training. Our method does not require additional parameters and can be applied to an arbitrary number of modalities. Specifically, BTW computes per-example KL weights by measuring the divergence between each unimodal and the current multimodal prediction, and modality-wide MI weights by estimating global alignment between unimodal and multimodal outputs. Extensive experiments on sentiment regression and clinical classification demonstrate that our method significantly improves regression performance and multiclass classification accuracy.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (3)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper: