Linear cost mutual information estimation and independence test of similar performance as HSIC (2508.18338v1)
Abstract: Evaluation of statistical dependencies between two data samples is a basic problem of data science/machine learning, and HSIC (Hilbert-Schmidt Information Criterion)~\cite{HSIC} is considered the state-of-art method. However, for size $n$ data sample it requires multiplication of $n\times n$ matrices, what currently needs $\sim O(n{2.37})$ computational complexity~\cite{mult}, making it impractical for large data samples. We discuss HCR (Hierarchical Correlation Reconstruction) as its linear cost practical alternative of even higher dependence sensitivity in tests, and additionally providing actual joint distribution model by description of dependencies through features being mixed moments, starting with correlation and homoscedasticity, also allowing to approximate mutual information as just sum of squares of such nontrivial mixed moments between two data samples. Such single dependence describing feature is calculated in $O(n)$ linear time. Their number to test varies with dimension $d$ - requiring $O(d2)$ for pairwise dependencies, $O(d3)$ if wanting to also consider more subtle triplewise, and so on.
Sponsored by Paperpile, the PDF & BibTeX manager trusted by top AI labs.
Get 30 days freePaper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.