Rephasing invariant formulae for general parameterizations of flavor mixing matrix and exact sum rules with unitarity triangles (2508.17866v1)
Abstract: In this letter, we present rephasing invariant formulae $\delta{(\alpha i)} = \arg [ { V_{\alpha 1} V_{\alpha 2} V_{\alpha 3} V_{1i} V_{2i} V_{3i} / V_{\alpha i }{3} \det V } ] $ for CP phases $\delta{(\alpha i)}$ associated with nine Euler-angle-like parameterizations of a flavor mixing matrix. Here, $\alpha$ and $i$ denote the row and column carrying the trivial phases in a given parameterization. Furthermore, we show that the phases $\delta{(\alpha i)}$ and the nine angles $\Phi_{\alpha i}$ of unitarity triangles satisfy compact sum rules $ \delta{(\alpha, i+2)} - \delta{(\alpha, i+1)} = \Phi_{\alpha-2, i} - \Phi_{\alpha-1, i}$ and $ \delta{(\alpha-2, i)} - \delta{(\alpha-1, i)} = \Phi_{\alpha, i+2} - \Phi_{\alpha, i+1}$ where all indices are taken cyclically modulo three. These twelve relations are natural generalizations of the previous result $\delta_{\mathrm{PDG}}+\delta_{\mathrm{KM}}=\pi-\alpha+\gamma.$
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.