Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 177 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 31 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 183 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

An LLM-LVLM Driven Agent for Iterative and Fine-Grained Image Editing (2508.17435v1)

Published 24 Aug 2025 in cs.CV

Abstract: Despite the remarkable capabilities of text-to-image (T2I) generation models, real-world applications often demand fine-grained, iterative image editing that existing methods struggle to provide. Key challenges include granular instruction understanding, robust context preservation during modifications, and the lack of intelligent feedback mechanisms for iterative refinement. This paper introduces RefineEdit-Agent, a novel, training-free intelligent agent framework designed to address these limitations by enabling complex, iterative, and context-aware image editing. RefineEdit-Agent leverages the powerful planning capabilities of LLMs and the advanced visual understanding and evaluation prowess of Vision-Language Large Models (LVLMs) within a closed-loop system. Our framework comprises an LVLM-driven instruction parser and scene understanding module, a multi-level LLM-driven editing planner for goal decomposition, tool selection, and sequence generation, an iterative image editing module, and a crucial LVLM-driven feedback and evaluation loop. To rigorously evaluate RefineEdit-Agent, we propose LongBench-T2I-Edit, a new benchmark featuring 500 initial images with complex, multi-turn editing instructions across nine visual dimensions. Extensive experiments demonstrate that RefineEdit-Agent significantly outperforms state-of-the-art baselines, achieving an average score of 3.67 on LongBench-T2I-Edit, compared to 2.29 for Direct Re-Prompting, 2.91 for InstructPix2Pix, 3.16 for GLIGEN-based Edit, and 3.39 for ControlNet-XL. Ablation studies, human evaluations, and analyses of iterative refinement, backbone choices, tool usage, and robustness to instruction complexity further validate the efficacy of our agentic design in delivering superior edit fidelity and context preservation.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.