Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 94 tok/s Pro
Kimi K2 216 tok/s Pro
GPT OSS 120B 459 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

General Agents (2508.17407v1)

Published 24 Aug 2025 in econ.GN and q-fin.EC

Abstract: Useful social science theories predict behavior across settings. However, applying a theory to make predictions in new settings is challenging: rarely can it be done without ad hoc modifications to account for setting-specific factors. We argue that modern AI agents offer an alternative for applying theory to novel settings, requiring minimal or no modifications. We present an approach for building such "general" agents that use theory-grounded natural language instructions, existing empirical data, and knowledge acquired by the underlying AI during training. To demonstrate the approach in settings where no data from that data-generating process exists--as is often the case in applied prediction problems--we design a highly heterogeneous population of 883,320 novel games. AI agents are constructed using human data from a small set of conceptually related, but structurally distinct "seed" games. In preregistered experiments, on average, agents predict human play better than (i) game-theoretic equilibria and (ii) out-of-the-box agents in a random sample of 1,500 games from the population. For a small set of separate novel games, these simulations predict responses from a new sample of human subjects better even than the most plausibly relevant published human data.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 10 posts and received 55 likes.

alphaXiv

  1. General Agents (4 likes, 0 questions)