Papers
Topics
Authors
Recent
2000 character limit reached

Active Domain Knowledge Acquisition with \$100 Budget: Enhancing LLMs via Cost-Efficient, Expert-Involved Interaction in Sensitive Domains (2508.17202v1)

Published 24 Aug 2025 in cs.CL

Abstract: LLMs have demonstrated an impressive level of general knowledge. However, they often struggle in highly specialized and cost-sensitive domains such as drug discovery and rare disease research due to the lack of expert knowledge. In this paper, we propose a novel framework (PU-ADKA) designed to efficiently enhance domain-specific LLMs by actively engaging domain experts within a fixed budget. Unlike traditional fine-tuning approaches, PU-ADKA selectively identifies and queries the most appropriate expert from a team, taking into account each expert's availability, knowledge boundaries, and consultation costs. We train PU-ADKA using simulations on PubMed data and validate it through both controlled expert interactions and real-world deployment with a drug development team, demonstrating its effectiveness in enhancing LLM performance in specialized domains under strict budget constraints. In addition to outlining our methodological innovations and experimental results, we introduce a new benchmark dataset, CKAD, for cost-effective LLM domain knowledge acquisition to foster further research in this challenging area.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.