Papers
Topics
Authors
Recent
2000 character limit reached

LLM Assertiveness can be Mechanistically Decomposed into Emotional and Logical Components (2508.17182v1)

Published 24 Aug 2025 in cs.LG, cs.AI, and cs.CL

Abstract: LLMs often display overconfidence, presenting information with unwarranted certainty in high-stakes contexts. We investigate the internal basis of this behavior via mechanistic interpretability. Using open-sourced Llama 3.2 models fine-tuned on human annotated assertiveness datasets, we extract residual activations across all layers, and compute similarity metrics to localize assertive representations. Our analysis identifies layers most sensitive to assertiveness contrasts and reveals that high-assertive representations decompose into two orthogonal sub-components of emotional and logical clusters-paralleling the dual-route Elaboration Likelihood Model in Psychology. Steering vectors derived from these sub-components show distinct causal effects: emotional vectors broadly influence prediction accuracy, while logical vectors exert more localized effects. These findings provide mechanistic evidence for the multi-component structure of LLM assertiveness and highlight avenues for mitigating overconfident behavior.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.