Papers
Topics
Authors
Recent
2000 character limit reached

ONG: Orthogonal Natural Gradient Descent (2508.17169v1)

Published 24 Aug 2025 in cs.LG and cs.AI

Abstract: Orthogonal gradient descent has emerged as a powerful method for continual learning tasks. However, its Euclidean projections overlook the underlying information-geometric structure of the space of distributions parametrized by neural networks, which can lead to suboptimal convergence in learning tasks. To counteract this, we combine it with the idea of the natural gradient and present ONG (Orthogonal Natural Gradient Descent). ONG preconditions each new task gradient with an efficient EKFAC approximation of the inverse Fisher information matrix, yielding updates that follow the steepest descent direction under a Riemannian metric. To preserve performance on previously learned tasks, ONG projects these natural gradients onto the orthogonal complement of prior task gradients. We provide a theoretical justification for this procedure, introduce the ONG algorithm, and benchmark its performance on the Permuted and Rotated MNIST datasets. All code for our experiments/reproducibility can be found at https://github.com/yajatyadav/orthogonal-natural-gradient.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Github Logo Streamline Icon: https://streamlinehq.com
X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

Sign up for free to view the 2 tweets with 0 likes about this paper.