Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 63 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 88 tok/s Pro
Kimi K2 152 tok/s Pro
GPT OSS 120B 325 tok/s Pro
Claude Sonnet 4.5 32 tok/s Pro
2000 character limit reached

Quantifying Language Disparities in Multilingual Large Language Models (2508.17162v1)

Published 23 Aug 2025 in cs.CL

Abstract: Results reported in large-scale multilingual evaluations are often fragmented and confounded by factors such as target languages, differences in experimental setups, and model choices. We propose a framework that disentangles these confounding variables and introduces three interpretable metrics--the performance realisation ratio, its coefficient of variation, and language potential--enabling a finer-grained and more insightful quantification of actual performance disparities across both (i) models and (ii) languages. Through a case study of 13 model variants on 11 multilingual datasets, we demonstrate that our framework provides a more reliable measurement of model performance and language disparities, particularly for low-resource languages, which have so far proven challenging to evaluate. Importantly, our results reveal that higher overall model performance does not necessarily imply greater fairness across languages.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.