Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 54 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 196 tok/s Pro
GPT OSS 120B 333 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Stochastic Gradient Descent with Strategic Querying (2508.17144v1)

Published 23 Aug 2025 in cs.LG and math.OC

Abstract: This paper considers a finite-sum optimization problem under first-order queries and investigates the benefits of strategic querying on stochastic gradient-based methods compared to uniform querying strategy. We first introduce Oracle Gradient Querying (OGQ), an idealized algorithm that selects one user's gradient yielding the largest possible expected improvement (EI) at each step. However, OGQ assumes oracle access to the gradients of all users to make such a selection, which is impractical in real-world scenarios. To address this limitation, we propose Strategic Gradient Querying (SGQ), a practical algorithm that has better transient-state performance than SGD while making only one query per iteration. For smooth objective functions satisfying the Polyak-Lojasiewicz condition, we show that under the assumption of EI heterogeneity, OGQ enhances transient-state performance and reduces steady-state variance, while SGQ improves transient-state performance over SGD. Our numerical experiments validate our theoretical findings.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.