Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 82 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 36 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 110 tok/s Pro
Kimi K2 185 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Convolutional Neural Networks for Accurate Measurement of Train Speed (2508.17096v1)

Published 23 Aug 2025 in cs.LG, cs.AI, cs.SY, and eess.SY

Abstract: In this study, we explore the use of Convolutional Neural Networks for improving train speed estimation accuracy, addressing the complex challenges of modern railway systems. We investigate three CNN architectures - single-branch 2D, single-branch 1D, and multiple-branch models - and compare them with the Adaptive Kalman Filter. We analyse their performance using simulated train operation datasets with and without Wheel Slide Protection activation. Our results reveal that CNN-based approaches, especially the multiple-branch model, demonstrate superior accuracy and robustness compared to traditional methods, particularly under challenging operational conditions. These findings highlight the potential of deep learning techniques to enhance railway safety and operational efficiency by more effectively capturing intricate patterns in complex transportation datasets.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.