Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 147 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 90 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 424 tok/s Pro
Claude Sonnet 4.5 39 tok/s Pro
2000 character limit reached

Limitations of refinement methods for weak to strong generalization (2508.17018v1)

Published 23 Aug 2025 in stat.ML and cs.LG

Abstract: Standard techniques for aligning LLMs utilize human-produced data, which could limit the capability of any aligned LLM to human level. Label refinement and weak training have emerged as promising strategies to address this superalignment problem. In this work, we adopt probabilistic assumptions commonly used to study label refinement and analyze whether refinement can be outperformed by alternative approaches, including computationally intractable oracle methods. We show that both weak training and label refinement suffer from irreducible error, leaving a performance gap between label refinement and the oracle. These results motivate future research into developing alternative methods for weak to strong generalization that synthesize the practicality of label refinement or weak training and the optimality of the oracle procedure.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 3 likes.

Upgrade to Pro to view all of the tweets about this paper: