Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 64 tok/s Pro
Kimi K2 185 tok/s Pro
GPT OSS 120B 442 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Lie-RMSD: A Gradient-Based Framework for Protein Structural Alignment using Lie Algebra (2508.17010v1)

Published 23 Aug 2025 in q-bio.QM

Abstract: The comparison of protein structures is a fundamental task in computational biology, crucial for understanding protein function, evolution, and for drug design. While analytical methods like the Kabsch algorithm provide an exact, closed-form solution for minimizing the Root Mean Square Deviation (RMSD) between two sets of corresponding atoms, their application is limited to this specific metric. The rise of deep learning and automatic differentiation frameworks offers a new, more flexible paradigm for such optimization problems. We present Lie-RMSD, a novel, fully differentiable framework for protein structural alignment. Our method represents the rigid-body transformation (rotation and translation) as a 6-dimensional vector in the Lie algebra se(3) of the special Euclidean group SE(3). This representation allows the RMSD to be formulated as a loss function that can be directly minimized by modern gradient-based optimizers. We benchmarked our framework by aligning two allosteric conformations of Adenylate Kinase (PDB IDs: 4AKE and 1AKE). We demonstrate that a suite of standard optimizers (SGD, Adam, AdamW, and Sophia) can robustly converge to the global minimum, achieving precision effectively identical to the analytical Kabsch algorithm. This work validates the accuracy of the Lie algebra-based gradient descent approach and establishes a robust foundation for its extension to more sophisticated and biologically relevant scoring functions where no analytical solutions exist.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper:

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube