Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 175 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 36 tok/s Pro
GPT-5 High 38 tok/s Pro
GPT-4o 92 tok/s Pro
Kimi K2 218 tok/s Pro
GPT OSS 120B 442 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

KL-Regularised Q-Learning: A Token-level Action-Value perspective on Online RLHF (2508.17000v1)

Published 23 Aug 2025 in cs.CL and cs.LG

Abstract: Proximal Policy Optimisation (PPO) is an established and effective policy gradient algorithm used for LLM Reinforcement Learning from Human Feedback (LM-RLHF). PPO performs well empirically but has a heuristic motivation and handles the KL-divergence constraint used in LM-RLHF in an ad-hoc manner. In this paper, we develop a a new action-value RL method for the LM-RLHF setting, KL-regularised Q-Learning (KLQ). We then show that our method is equivalent to a version of PPO in a certain specific sense, despite its very different motivation. Finally, we benchmark KLQ on two key language generation tasks -- summarisation and single-turn dialogue. We demonstrate that KLQ performs on-par with PPO at optimising the LM-RLHF objective, and achieves a consistently higher win-rate against PPO on LLM-as-a-judge evaluations.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper: