Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 145 tok/s
Gemini 2.5 Pro 40 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 195 tok/s Pro
GPT OSS 120B 446 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

DeAR: Dual-Stage Document Reranking with Reasoning Agents via LLM Distillation (2508.16998v1)

Published 23 Aug 2025 in cs.CL and cs.IR

Abstract: LLMs have transformed listwise document reranking by enabling global reasoning over candidate sets, yet single models often struggle to balance fine-grained relevance scoring with holistic cross-document analysis. We propose \textbf{De}ep\textbf{A}gent\textbf{R}ank (\textbf{\DeAR}), an open-source framework that decouples these tasks through a dual-stage approach, achieving superior accuracy and interpretability. In \emph{Stage 1}, we distill token-level relevance signals from a frozen 13B LLaMA teacher into a compact {3, 8}B student model using a hybrid of cross-entropy, RankNet, and KL divergence losses, ensuring robust pointwise scoring. In \emph{Stage 2}, we attach a second LoRA adapter and fine-tune on 20K GPT-4o-generated chain-of-thought permutations, enabling listwise reasoning with natural-language justifications. Evaluated on TREC-DL19/20, eight BEIR datasets, and NovelEval-2306, \DeAR surpasses open-source baselines by +5.1 nDCG@5 on DL20 and achieves 90.97 nDCG@10 on NovelEval, outperforming GPT-4 by +3.09. Without fine-tuning on Wikipedia, DeAR also excels in open-domain QA, achieving 54.29 Top-1 accuracy on Natural Questions, surpassing baselines like MonoT5, UPR, and RankGPT. Ablations confirm that dual-loss distillation ensures stable calibration, making \DeAR a highly effective and interpretable solution for modern reranking systems.\footnote{Dataset and code available at https://github.com/DataScienceUIBK/DeAR-Reranking.}.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 5 likes.

Upgrade to Pro to view all of the tweets about this paper: