Generating Synthetic Contrast-Enhanced Chest CT Images from Non-Contrast Scans Using Slice-Consistent Brownian Bridge Diffusion Network (2508.16897v1)
Abstract: Contrast-enhanced computed tomography (CT) imaging is essential for diagnosing and monitoring thoracic diseases, including aortic pathologies. However, contrast agents pose risks such as nephrotoxicity and allergic-like reactions. The ability to generate high-fidelity synthetic contrast-enhanced CT angiography (CTA) images without contrast administration would be transformative, enhancing patient safety and accessibility while reducing healthcare costs. In this study, we propose the first bridge diffusion-based solution for synthesizing contrast-enhanced CTA images from non-contrast CT scans. Our approach builds on the Slice-Consistent Brownian Bridge Diffusion Model (SC-BBDM), leveraging its ability to model complex mappings while maintaining consistency across slices. Unlike conventional slice-wise synthesis methods, our framework preserves full 3D anatomical integrity while operating in a high-resolution 2D fashion, allowing seamless volumetric interpretation under a low memory budget. To ensure robust spatial alignment, we implement a comprehensive preprocessing pipeline that includes resampling, registration using the Symmetric Normalization method, and a sophisticated dilated segmentation mask to extract the aorta and surrounding structures. We create two datasets from the Coltea-Lung dataset: one containing only the aorta and another including both the aorta and heart, enabling a detailed analysis of anatomical context. We compare our approach against baseline methods on both datasets, demonstrating its effectiveness in preserving vascular structures while enhancing contrast fidelity.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.