Beyond Memorization: Extending Reasoning Depth with Recurrence, Memory and Test-Time Compute Scaling (2508.16745v1)
Abstract: Reasoning is a core capability of LLMs, yet understanding how they learn and perform multi-step reasoning remains an open problem. In this study, we explore how different architectures and training methods affect model multi-step reasoning capabilities within a cellular automata framework. By training on state sequences generated with random Boolean functions for random initial conditions to exclude memorization, we demonstrate that most neural architectures learn to abstract the underlying rules. While models achieve high accuracy in next-state prediction, their performance declines sharply if multi-step reasoning is required. We confirm that increasing model depth plays a crucial role for sequential computations. We demonstrate that an extension of the effective model depth with recurrence, memory, and test-time compute scaling substantially enhances reasoning capabilities.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.