Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 79 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 199 tok/s Pro
GPT OSS 120B 444 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Sparse and Dense Retrievers Learn Better Together: Joint Sparse-Dense Optimization for Text-Image Retrieval (2508.16707v1)

Published 22 Aug 2025 in cs.CL, cs.IR, and cs.LG

Abstract: Vision-Language Pretrained (VLP) models have achieved impressive performance on multimodal tasks, including text-image retrieval, based on dense representations. Meanwhile, Learned Sparse Retrieval (LSR) has gained traction in text-only settings due to its interpretability and efficiency with fast term-based lookup via inverted indexes. Inspired by these advantages, recent work has extended LSR to the multimodal domain. However, these methods often rely on computationally expensive contrastive pre-training, or distillation from a frozen dense model, which limits the potential for mutual enhancement. To address these limitations, we propose a simple yet effective framework that enables bi-directional learning between dense and sparse representations through Self-Knowledge Distillation. This bi-directional learning is achieved using an integrated similarity score-a weighted sum of dense and sparse similarities-which serves as a shared teacher signal for both representations. To ensure efficiency, we fine-tune the final layer of the dense encoder and the sparse projection head, enabling easy adaptation of any existing VLP model. Experiments on MSCOCO and Flickr30k demonstrate that our sparse retriever not only outperforms existing sparse baselines, but also achieves performance comparable to-or even surpassing-its dense counterparts, while retaining the benefits of sparse models.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.