Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 177 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 31 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 183 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Enabling Multi-Agent Systems as Learning Designers: Applying Learning Sciences to AI Instructional Design (2508.16659v1)

Published 20 Aug 2025 in cs.CY, cs.AI, and cs.HC

Abstract: K-12 educators are increasingly using LLMs to create instructional materials. These systems excel at producing fluent, coherent content, but often lack support for high-quality teaching. The reason is twofold: first, commercial LLMs, such as ChatGPT and Gemini which are among the most widely accessible to teachers, do not come preloaded with the depth of pedagogical theory needed to design truly effective activities; second, although sophisticated prompt engineering can bridge this gap, most teachers lack the time or expertise and find it difficult to encode such pedagogical nuance into their requests. This study shifts pedagogical expertise from the user's prompt to the LLM's internal architecture. We embed the well-established Knowledge-Learning-Instruction (KLI) framework into a Multi-Agent System (MAS) to act as a sophisticated instructional designer. We tested three systems for generating secondary Math and Science learning activities: a Single-Agent baseline simulating typical teacher prompts; a role-based MAS where agents work sequentially; and a collaborative MAS-CMD where agents co-construct activities through conquer and merge discussion. The generated materials were evaluated by 20 practicing teachers and a complementary LLM-as-a-judge system using the Quality Matters (QM) K-12 standards. While the rubric scores showed only small, often statistically insignificant differences between the systems, the qualitative feedback from educators painted a clear and compelling picture. Teachers strongly preferred the activities from the collaborative MAS-CMD, describing them as significantly more creative, contextually relevant, and classroom-ready. Our findings show that embedding pedagogical principles into LLM systems offers a scalable path for creating high-quality educational content.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.