Papers
Topics
Authors
Recent
2000 character limit reached

AdapSNE: Adaptive Fireworks-Optimized and Entropy-Guided Dataset Sampling for Edge DNN Training (2508.16647v1)

Published 19 Aug 2025 in cs.LG

Abstract: Training deep neural networks (DNNs) directly on edge devices has attracted increasing attention, as it offers promising solutions to challenges such as domain adaptation and privacy preservation. However, conventional DNN training typically requires large-scale datasets, which imposes prohibitive overhead on edge devices-particularly for emerging LLM tasks. To address this challenge, a DNN-free method (ie., dataset sampling without DNN), named NMS (Near-Memory Sampling), has been introduced. By first conducting dimensionality reduction of the dataset and then performing exemplar sampling in the reduced space, NMS avoids the architectural bias inherent in DNN-based methods and thus achieves better generalization. However, The state-of-the-art, NMS, suffers from two limitations: (1) The mismatch between the search method and the non-monotonic property of the perplexity error function leads to the emergence of outliers in the reduced representation; (2) Key parameter (ie., target perplexity) is selected empirically, introducing arbitrariness and leading to uneven sampling. These two issues lead to representative bias of examplars, resulting in degraded accuracy. To address these issues, we propose AdapSNE, which integrates an efficient non-monotonic search method-namely, the Fireworks Algorithm (FWA)-to suppress outliers, and employs entropy-guided optimization to enforce uniform sampling, thereby ensuring representative training samples and consequently boosting training accuracy. To cut the edge-side cost arising from the iterative computations of FWA search and entropy-guided optimization, we design an accelerator with custom dataflow and time-multiplexing markedly reducing on-device training energy and area.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

Sign up for free to view the 1 tweet with 0 likes about this paper.