Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 171 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 36 tok/s Pro
GPT-4o 60 tok/s Pro
Kimi K2 188 tok/s Pro
GPT OSS 120B 437 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

A Retrieval Augmented Spatio-Temporal Framework for Traffic Prediction (2508.16623v1)

Published 14 Aug 2025 in cs.LG and cs.AI

Abstract: Traffic prediction is a cornerstone of modern intelligent transportation systems and a critical task in spatio-temporal forecasting. Although advanced Spatio-temporal Graph Neural Networks (STGNNs) and pre-trained models have achieved significant progress in traffic prediction, two key challenges remain: (i) limited contextual capacity when modeling complex spatio-temporal dependencies, and (ii) low predictability at fine-grained spatio-temporal points due to heterogeneous patterns. Inspired by Retrieval-Augmented Generation (RAG), we propose RAST, a universal framework that integrates retrieval-augmented mechanisms with spatio-temporal modeling to address these challenges. Our framework consists of three key designs: 1) Decoupled Encoder and Query Generator to capture decoupled spatial and temporal features and construct a fusion query via residual fusion; 2) Spatio-temporal Retrieval Store and Retrievers to maintain and retrieve vectorized fine-grained patterns; and 3) Universal Backbone Predictor that flexibly accommodates pre-trained STGNNs or simple MLP predictors. Extensive experiments on six real-world traffic networks, including large-scale datasets, demonstrate that RAST achieves superior performance while maintaining computational efficiency.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper: