Papers
Topics
Authors
Recent
2000 character limit reached

Integrated Noise and Safety Management in UAM via A Unified Reinforcement Learning Framework (2508.16440v1)

Published 22 Aug 2025 in cs.MA and cs.LG

Abstract: Urban Air Mobility (UAM) envisions the widespread use of small aerial vehicles to transform transportation in dense urban environments. However, UAM faces critical operational challenges, particularly the balance between minimizing noise exposure and maintaining safe separation in low-altitude urban airspace, two objectives that are often addressed separately. We propose a reinforcement learning (RL)-based air traffic management system that integrates both noise and safety considerations within a unified, decentralized framework. Under this scalable air traffic coordination solution, agents operate in a structured, multi-layered airspace and learn altitude adjustment policies to jointly manage noise impact and separation constraints. The system demonstrates strong performance across both objectives and reveals tradeoffs among separation, noise exposure, and energy efficiency under high traffic density. The findings highlight the potential of RL and multi-objective coordination strategies in enhancing the safety, quietness, and efficiency of UAM operations.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

Sign up for free to view the 1 tweet with 0 likes about this paper.