Papers
Topics
Authors
Recent
2000 character limit reached

Causal Beam Selection for Reliable Initial Access in AI-driven Beam Management (2508.16352v1)

Published 22 Aug 2025 in cs.AI and eess.SP

Abstract: Efficient and reliable beam alignment is a critical requirement for mmWave multiple-input multiple-output (MIMO) systems, especially in 6G and beyond, where communication must be fast, adaptive, and resilient to real-world uncertainties. Existing deep learning (DL)-based beam alignment methods often neglect the underlying causal relationships between inputs and outputs, leading to limited interpretability, poor generalization, and unnecessary beam sweeping overhead. In this work, we propose a causally-aware DL framework that integrates causal discovery into beam management pipeline. Particularly, we propose a novel two-stage causal beam selection algorithm to identify a minimal set of relevant inputs for beam prediction. First, causal discovery learns a Bayesian graph capturing dependencies between received power inputs and the optimal beam. Then, this graph guides causal feature selection for the DL-based classifier. Simulation results reveal that the proposed causal beam selection matches the performance of conventional methods while drastically reducing input selection time by 94.4% and beam sweeping overhead by 59.4% by focusing only on causally relevant features.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.