Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 33 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 74 tok/s Pro
Kimi K2 188 tok/s Pro
GPT OSS 120B 362 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

QUEENS: An Open-Source Python Framework for Solver-Independent Analyses of Large-Scale Computational Models (2508.16316v1)

Published 22 Aug 2025 in cs.CE

Abstract: A growing challenge in research and industrial engineering applications is the need for repeated, systematic analysis of large-scale computational models, for example, patient-specific digital twins of diseased human organs: The analysis requires efficient implementation, data, resource management, and parallelization, possibly on distributed systems. To tackle these challenges and save many researchers from annoying, time-consuming tasks, we present QUEENS (Quantification of Uncertain Effects in Engineering Systems), an open-source Python framework for composing and managing simulation analyses with arbitrary (physics-based) solvers on distributed computing infrastructures. Besides simulation management capabilities, QUEENS offers a comprehensive collection of efficiently implemented state-of-the-art algorithms ranging from routines for convergence studies and common optimization algorithms to more advanced sampling algorithms for uncertainty quantification and Bayesian inverse analysis. Additionally, we provide our latest cutting-edge research in multi-fidelity uncertainty quantification, efficient multi-fidelity Bayesian inverse analysis, and probabilistic machine learning. QUEENS adopts a Bayesian, probabilistic mindset but equally supports standard deterministic analysis without requiring prior knowledge of probability theory. The modular architecture allows rapid switching between common types of analyses and facilitates building sophisticated hierarchical algorithms. Encouraging natural incremental steps and scaling towards complexity allows researchers to consider the big picture while building towards it through smaller, manageable steps. The open-source repository is available at https://github.com/queens-py/queens.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube