Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 137 tok/s
Gemini 2.5 Pro 45 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 116 tok/s Pro
Kimi K2 207 tok/s Pro
GPT OSS 120B 430 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Exploiting Information Redundancy in Attention Maps for Extreme Quantization of Vision Transformers (2508.16311v1)

Published 22 Aug 2025 in cs.CV, cs.AI, cs.IT, and math.IT

Abstract: Transformer models rely on Multi-Head Self-Attention (MHSA) mechanisms, where each attention head contributes to the final representation. However, their computational complexity and high memory demands due to MHSA hinders their deployment at the edge. In this work, we analyze and exploit information redundancy in attention maps to accelerate model inference. By quantifying the information captured by each attention head using Shannon entropy, our analysis reveals that attention heads with lower entropy, i.e., exhibiting more deterministic behavior, tend to contribute less information, motivating targeted compression strategies. Relying on these insights, we propose Entropy Attention Maps (EAM), a model that freezes the weights of low-entropy attention maps and quantizes these values to low precision to avoid redundant re-computation. Empirical validation on ImageNet-1k shows that EAM achieves similar or higher accuracy at $\leq$20\% sparsity in attention maps and competitive performance beyond this level for the DeiT and Swin Transformer models.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper: