Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 65 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 80 tok/s Pro
Kimi K2 182 tok/s Pro
GPT OSS 120B 453 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

A Sharp KL-Convergence Analysis for Diffusion Models under Minimal Assumptions (2508.16306v1)

Published 22 Aug 2025 in stat.ML, cs.LG, math.AP, math.ST, and stat.TH

Abstract: Diffusion-based generative models have emerged as highly effective methods for synthesizing high-quality samples. Recent works have focused on analyzing the convergence of their generation process with minimal assumptions, either through reverse SDEs or Probability Flow ODEs. The best known guarantees, without any smoothness assumptions, for the KL divergence so far achieve a linear dependence on the data dimension $d$ and an inverse quadratic dependence on $\varepsilon$. In this work, we present a refined analysis that improves the dependence on $\varepsilon$. We model the generation process as a composition of two steps: a reverse ODE step, followed by a smaller noising step along the forward process. This design leverages the fact that the ODE step enables control in Wasserstein-type error, which can then be converted into a KL divergence bound via noise addition, leading to a better dependence on the discretization step size. We further provide a novel analysis to achieve the linear $d$-dependence for the error due to discretizing this Probability Flow ODE in absence of any smoothness assumptions. We show that $\tilde{O}\left(\tfrac{d\log{3/2}(\frac{1}{\delta})}{\varepsilon}\right)$ steps suffice to approximate the target distribution corrupted with Gaussian noise of variance $\delta$ within $O(\varepsilon2)$ in KL divergence, improving upon the previous best result, requiring $\tilde{O}\left(\tfrac{d\log2(\frac{1}{\delta})}{\varepsilon2}\right)$ steps.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube