Papers
Topics
Authors
Recent
2000 character limit reached

When Simpler Wins: Facebooks Prophet vs LSTM for Air Pollution Forecasting in Data-Constrained Northern Nigeria (2508.16244v1)

Published 22 Aug 2025 in cs.LG

Abstract: Air pollution forecasting is critical for proactive environmental management, yet data irregularities and scarcity remain major challenges in low-resource regions. Northern Nigeria faces high levels of air pollutants, but few studies have systematically compared the performance of advanced machine learning models under such constraints. This study evaluates Long Short-Term Memory (LSTM) networks and the Facebook Prophet model for forecasting multiple pollutants (CO, SO2, SO4) using monthly observational data from 2018 to 2023 across 19 states. Results show that Prophet often matches or exceeds LSTM's accuracy, particularly in series dominated by seasonal and long-term trends, while LSTM performs better in datasets with abrupt structural changes. These findings challenge the assumption that deep learning models inherently outperform simpler approaches, highlighting the importance of model-data alignment. For policymakers and practitioners in resource-constrained settings, this work supports adopting context-sensitive, computationally efficient forecasting methods over complexity for its own sake.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.