TULIP: Adapting Open-Source Large Language Models for Underrepresented Languages and Specialized Financial Tasks (2508.16243v1)
Abstract: Thanks to the growing popularity of LLMs over the years, there is great potential for their applications in finance. Despite the exceptional performance of larger proprietary models, which are presented as black-box solutions through APIs, smaller models that can be hosted on-premise present opportunities for adaptability and privacy. Especially in cases where the management of sensitive information and application of domain knowledge is important, like finance, enhancing the capabilities of smaller models becomes crucial, notably for underrepresented languages. In this work, we introduce TULIP models, which adapt Llama 3.1 8B and Qwen 2.5 7B for domain and language adaptation, focusing on financial Turkish use cases. The five-stage development pipeline involves data collection, continual pre-training (CPT), benchmark design, synthetic data generation and supervised fine-tuning (SFT). The results show that the capabilities of the models can be enhanced to effectively accomplish targeted tasks in this specific domain and language.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.