Spike Agreement Dependent Plasticity: A scalable Bio-Inspired learning paradigm for Spiking Neural Networks (2508.16216v1)
Abstract: We introduce Spike Agreement Dependent Plasticity (SADP), a biologically inspired synaptic learning rule for Spiking Neural Networks (SNNs) that relies on the agreement between pre- and post-synaptic spike trains rather than precise spike-pair timing. SADP generalizes classical Spike-Timing-Dependent Plasticity (STDP) by replacing pairwise temporal updates with population-level correlation metrics such as Cohen's kappa. The SADP update rule admits linear-time complexity and supports efficient hardware implementation via bitwise logic. Empirical results on MNIST and Fashion-MNIST show that SADP, especially when equipped with spline-based kernels derived from our experimental iontronic organic memtransistor device data, outperforms classical STDP in both accuracy and runtime. Our framework bridges the gap between biological plausibility and computational scalability, offering a viable learning mechanism for neuromorphic systems.
Sponsored by Paperpile, the PDF & BibTeX manager trusted by top AI labs.
Get 30 days freePaper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.