Papers
Topics
Authors
Recent
2000 character limit reached

Set Transformer Architectures and Synthetic Data Generation for Flow-Guided Nanoscale Localization

Published 22 Aug 2025 in cs.ET, cs.AI, cs.LG, and cs.NI | (2508.16200v1)

Abstract: Flow-guided Localization (FGL) enables the identification of spatial regions within the human body that contain an event of diagnostic interest. FGL does that by leveraging the passive movement of energy-constrained nanodevices circulating through the bloodstream. Existing FGL solutions rely on graph models with fixed topologies or handcrafted features, which limit their adaptability to anatomical variability and hinder scalability. In this work, we explore the use of Set Transformer architectures to address these limitations. Our formulation treats nanodevices' circulation time reports as unordered sets, enabling permutation-invariant, variable-length input processing without relying on spatial priors. To improve robustness under data scarcity and class imbalance, we integrate synthetic data generation via deep generative models, including CGAN, WGAN, WGAN-GP, and CVAE. These models are trained to replicate realistic circulation time distributions conditioned on vascular region labels, and are used to augment the training data. Our results show that the Set Transformer achieves comparable classification accuracy compared to Graph Neural Networks (GNN) baselines, while simultaneously providing by-design improved generalization to anatomical variability. The findings highlight the potential of permutation-invariant models and synthetic augmentation for robust and scalable nanoscale localization.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.