Papers
Topics
Authors
Recent
2000 character limit reached

Strategic Sample Selection for Improved Clean-Label Backdoor Attacks in Text Classification (2508.15934v1)

Published 21 Aug 2025 in cs.CR, cs.AI, and cs.LG

Abstract: Backdoor attacks pose a significant threat to the integrity of text classification models used in natural language processing. While several dirty-label attacks that achieve high attack success rates (ASR) have been proposed, clean-label attacks are inherently more difficult. In this paper, we propose three sample selection strategies to improve attack effectiveness in clean-label scenarios: Minimum, Above50, and Below50. Our strategies identify those samples which the model predicts incorrectly or with low confidence, and by injecting backdoor triggers into such samples, we aim to induce a stronger association between the trigger patterns and the attacker-desired target label. We apply our methods to clean-label variants of four canonical backdoor attacks (InsertSent, WordInj, StyleBkd, SynBkd) and evaluate them on three datasets (IMDB, SST2, HateSpeech) and four model types (LSTM, BERT, DistilBERT, RoBERTa). Results show that the proposed strategies, particularly the Minimum strategy, significantly improve the ASR over random sample selection with little or no degradation in the model's clean accuracy. Furthermore, clean-label attacks enhanced by our strategies outperform BITE, a state of the art clean-label attack method, in many configurations.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.