Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 36 tok/s Pro
GPT-4o 129 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 442 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

NEAT: Concept driven Neuron Attribution in LLMs (2508.15875v1)

Published 21 Aug 2025 in cs.CL, cs.AI, and cs.LG

Abstract: Locating neurons that are responsible for final predictions is important for opening the black-box LLMs and understanding the inside mechanisms. Previous studies have tried to find mechanisms that operate at the neuron level but these methods fail to represent a concept and there is also scope for further optimization of compute required. In this paper, with the help of concept vectors, we propose a method for locating significant neurons that are responsible for representing certain concepts and term those neurons as concept neurons. If the number of neurons is n and the number of examples is m, we reduce the number of forward passes required from O(n*m) to just O(n) compared to the previous works and hence optimizing the time and computation required over previous works. We also compare our method with several baselines and previous methods and our results demonstrate better performance than most of the methods and are more optimal when compared to the state-of-the-art method. We, as part of our ablation studies, also try to optimize the search for the concept neurons by involving clustering methods. Finally, we apply our methods to find, turn off the neurons that we find, and analyze its implications in parts of hate speech and bias in LLMs, and we also evaluate our bias part in terms of Indian context. Our methodology, analysis and explanations facilitate understating of neuron-level responsibility for more broader and human-like concepts and also lay a path for future research in this direction of finding concept neurons and intervening them.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.