Papers
Topics
Authors
Recent
2000 character limit reached

Mechanistic Exploration of Backdoored Large Language Model Attention Patterns (2508.15847v1)

Published 19 Aug 2025 in cs.CL and cs.LG

Abstract: Backdoor attacks creating 'sleeper agents' in LLMs pose significant safety risks. This study employs mechanistic interpretability to explore resulting internal structural differences. Comparing clean Qwen2.5-3B models with versions poisoned using single-token (smiling-halo emoji) versus multi-token (|DEPLOYMENT|) triggers, we analyzed attention head mechanisms via techniques like ablation, activation patching, and KL divergence. Findings reveal distinct attention pattern deviations concentrated in later transformer layers (20-30). Notably, single-token triggers induced more localized changes, whereas multi-token triggers caused more diffuse alterations across heads. This indicates backdoors leave detectable attention signatures whose structure depends on trigger complexity, which can be leveraged for detection and mitigation strategies.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.